imputegap.algorithms.cdrec package¶
The imputegap.algorithms.cdrec package contains various imputation algorithms used for handling missing values in time series data.
Submodules¶
Modules¶
- imputegap.algorithms.cdrec.cdrec(incomp_data, truncation_rank, iterations, epsilon, logs=True, lib_path=None)[source]¶
CDRec algorithm for matrix imputation of missing values using Centroid Decomposition.
Parameters¶
- incomp_datanumpy.ndarray
The input matrix with contamination (missing values represented as NaNs).
- truncation_rankint
The truncation rank for matrix decomposition (must be greater than 1 and smaller than the number of series).
- epsilonfloat
The learning rate (stopping criterion threshold).
- iterationsint
The maximum number of iterations allowed for the algorithm.
- logsbool, optional
Whether to log the execution time (default is True).
- lib_pathstr, optional
Custom path to the shared library file (default is None).
Returns¶
- numpy.ndarray
The imputed matrix with missing values recovered.
Example¶
>>> recov_data = cdrec(incomp_data=incomp_data, truncation_rank=1, iterations=100, epsilon=0.000001, logs=True) >>> print(recov_data)
- imputegap.algorithms.cdrec.native_cdrec(__py_matrix, __py_rank, __py_epsilon, __py_iterations)[source]¶
Perform matrix imputation using the CDRec algorithm with native C++ support.
Parameters¶
- __py_matrixnumpy.ndarray
The input matrix with missing values (NaNs).
- __py_rankint
The truncation rank for matrix decomposition (must be greater than 0 and less than the number of columns).
- __py_epsilonfloat
The epsilon value, used as the threshold for stopping iterations based on difference.
- __py_iterationsint
The maximum number of allowed iterations for the algorithm.
Returns¶
- numpy.ndarray
The recovered matrix after imputation.
References¶
Khayati, M., Cudré-Mauroux, P. & Böhlen, M.H. Scalable recovery of missing blocks in time series with high and low cross-correlations. Knowl Inf Syst 62, 2257–2280 (2020). https://doi.org/10.1007/s10115-019-01421-7