imputegap.algorithms.iim package¶
The imputegap.algorithms.iim package contains various imputation algorithms used for handling missing values in time series data.
Submodules¶
Modules¶
- imputegap.algorithms.iim.iim(incomp_data, number_neighbor, algo_code, logs=True)[source]¶
Perform imputation using the Iterative Imputation Method (IIM) algorithm.
Parameters¶
- incomp_datanumpy.ndarray
The input matrix with contamination (missing values represented as NaNs).
- number_neighborint
The number of neighbors to use for the K-Nearest Neighbors (KNN) classifier (default is 10).
- algo_codestr
The specific action code for the IIM output. This determines the behavior of the algorithm.
- logsbool, optional
Whether to log the execution time (default is True).
Returns¶
- numpy.ndarray
The imputed matrix with missing values recovered.
Notes¶
The IIM algorithm works by utilizing K-Nearest Neighbors (KNN) to estimate missing values in time series data. Depending on the provided algo_code, different versions of the algorithm may be executed.
The function logs the total execution time if logs is set to True.
Example¶
>>> recov_data = iim(incomp_data, number_neighbor=10, algo_code="iim 2") >>> print(recov_data)
References¶
A. Zhang, S. Song, Y. Sun and J. Wang, “Learning Individual Models for Imputation,” 2019 IEEE 35th International Conference on Data Engineering (ICDE), Macao, China, 2019, pp. 160-171, doi: 10.1109/ICDE.2019.00023. keywords: {Data models;Adaptation models;Computational modeling;Predictive models;Numerical models;Aggregates;Regression tree analysis;Missing values;Data imputation}