============ Distribution ============ To use any distribution, provide a probability matrix as a parameter, covering all values and series. The following example illustrates the computation of a Gaussian distribution: .. code-block:: python from scipy.stats import norm import numpy as np probabilities = [] for series in ts.data: N = len(series) P = int(N * 0.1) R = np.arange(P, N) mean = np.mean(series) D = norm.pdf(R, loc=P + mean * (N - P), scale=0.2 * (N - P)) D /= D.sum() probabilities.append(D) ts_m2 = ts.Contamination.distribution(ts.data, rate_dataset=0.2, rate_series=0.4, probabilities_list=probabilities, seed=True) The code will produce the same output then this snippet : .. code-block:: python ts_m = ts.Contamination.gaussian(ts.data, rate_dataset=0.2, rate_series=0.4, std_dev=0.2, seed=True)