========= Explainer ========= ImputeGAP provides insights into the algorithm's behavior by identifying the features that impact the most the imputation results. It trains a regression model to predict imputation results across various methods and uses SHapley Additive exPlanations (`SHAP `_) to reveal how different time series features influence the model’s predictions. Let's illustrate the explainer using the CDRec Algorithm and MCAR missingness pattern: .. code-block:: python from imputegap.recovery.manager import TimeSeries from imputegap.recovery.explainer import Explainer from imputegap.tools import utils # initialize the TimeSeries() object ts = TimeSeries() # load and normalize the timeseries ts.load_series(utils.search_path("eeg-alcohol")) ts.normalize(normalizer="z_score") # configure the explanation shap_values, shap_details = Explainer.shap_explainer(input_data=ts.data, extractor="pycatch", pattern="missing_completely_at_random", file_name=ts.name, algorithm="CDRec") # print the impact of each feature Explainer.print(shap_values, shap_details)