========== Downstream ========== ImputeGAP includes a dedicated module for systematically evaluating the impact of data imputation on downstream tasks. Currently, forecasting is the primary supported task, with plans to expand to additional tasks in the future. .. code-block:: python from imputegap.recovery.imputation import Imputation from imputegap.recovery.manager import TimeSeries from imputegap.tools import utils # initialize the time series object ts = TimeSeries() # load and normalize the timeseries ts.load_series(utils.search_path("forecast-economy")) ts.normalize() # contaminate the time series ts_m = ts.Contamination.aligned(ts.data, rate_series=0.8) # define and impute the contaminated series imputer = Imputation.MatrixCompletion.CDRec(ts_m) imputer.impute() # compute and print the downstream results downstream_config = {"task": "forecast", "model": "hw-add", "comparator": "ZeroImpute"} imputer.score(ts.data, imputer.recov_data, downstream=downstream_config) ts.print_results(imputer.downstream_metrics, algorithm=imputer.algorithm) All downstream models developed in ImputeGAP are available in the ``ts.forecasting_models`` module, which can be listed as follows: .. code-block:: python from imputegap.recovery.manager import TimeSeries ts = TimeSeries() print(f"ImputeGAP downstream models for forecasting : {ts.forecasting_models}") .. raw:: html